Overview of the WGIN4 Core Project

March 2018 - March 2023

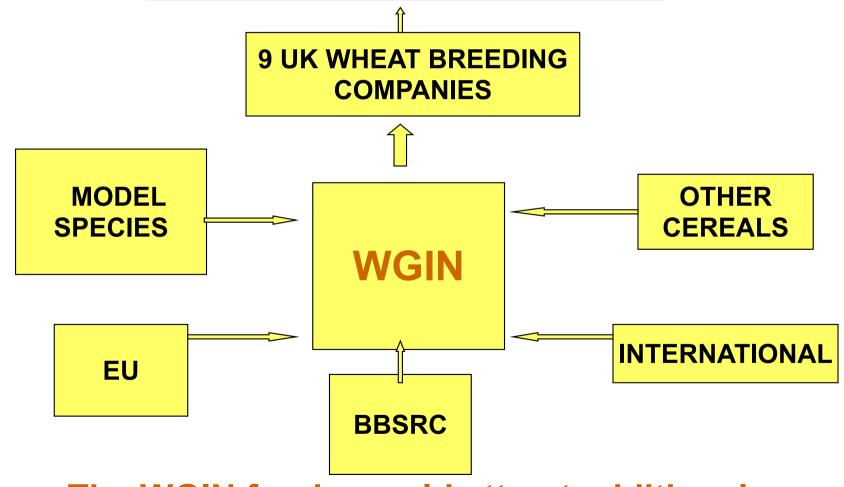
Kim Hammond-Kosack Rothamsted Research

3rd March 2021, 18th Stakeholder meeting, RRes, Herts

WGIN provides a research platform for the delivery of

- tools
- resources
- bioinformatics (large scale DNA analyses)
- expertise for the identification of naturally occurring (useful) genetic variation in new traits

Yield and quality per se are excluded



The Defra WGIN

started in 2003

Grain Producers and Utilisers

The WGIN funds would attract additional funds to wheat research by other sponsors

Mission statement - WGIN 2015 to 2023

Improving the resilience of the wheat crop through genetics and targeted traits analysis

WGIN4 Core Research Project split

70 % trait analyses

30% development of new genetic and genomic resources

Four overarching challenges:

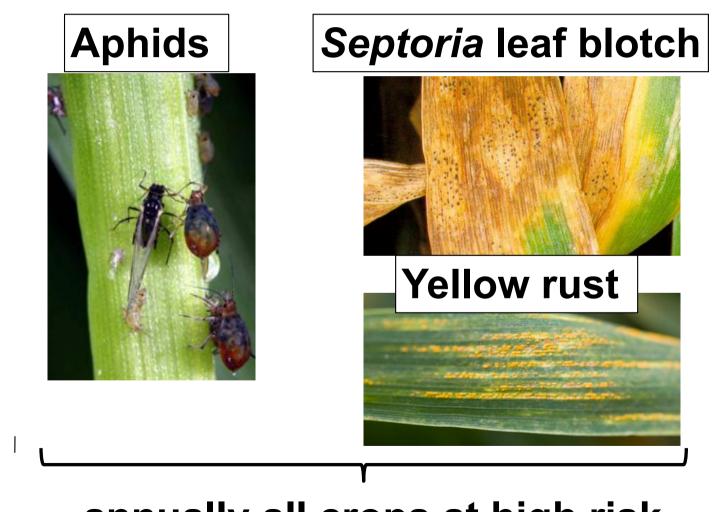
20% Enhanced Resource Efficiency Nitrogen (NUE)

25% Sustainability - Yield Stability Spring drought, lodging* and stem anchorage*

30% Resilience Resistance to slugs*, BYDV* vectored by aphids, Septoria, Yellow rust and the take-all root pathogen

25% Quality Yield, grain protein, grain specific weight*, NUE and nutrient partitioning as affected by N-input and disease*

* New for WGIN4


New resources / tools developed in WGIN THE BIG FIVE

- A reference UK mapping population
 Avalon x Cadenza (DH popⁿ, 203 lines + 584 lines)

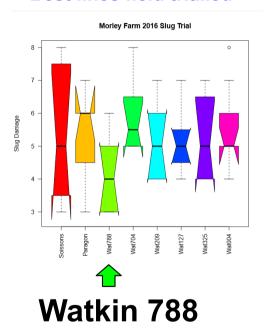
 The world's most phenotyped mapping population
- Restoration of the AE Watkins wheat collection
 > 1300 landraces from 32 countries
 never previously used in modern breeding
- EMS mutagenised TILLING populations
 Cadenza and Paragon (> 5000 lines + 1200C lines DNA)
- A global collection of *T. monococcum* accessions (AA genome) ~ 323 lines, 34K breeders array + 5 F₆ popⁿ
- Grain samples (-20C) from WGIN cultivar diversity trials since 2003 (3 or 4 N treatments / all plots)

Trait identification - RRes

2. Reducing pest and disease pressure

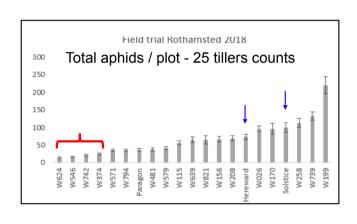
annually all crops at high risk

The restored AE Watkins wheat collection


~1300 landraces from 32 countries collected in 1930s never previously used in modern breeding

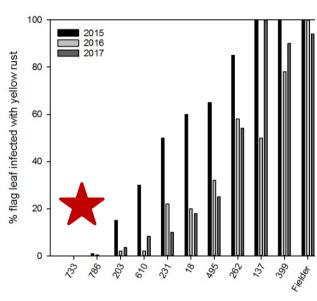
Screened for multiple traits over multiple seasons

Watkins lines with high levels of resistance to pest and pathogens


Slugs 1st screened in lab tests Best lines field trialled

Aphids

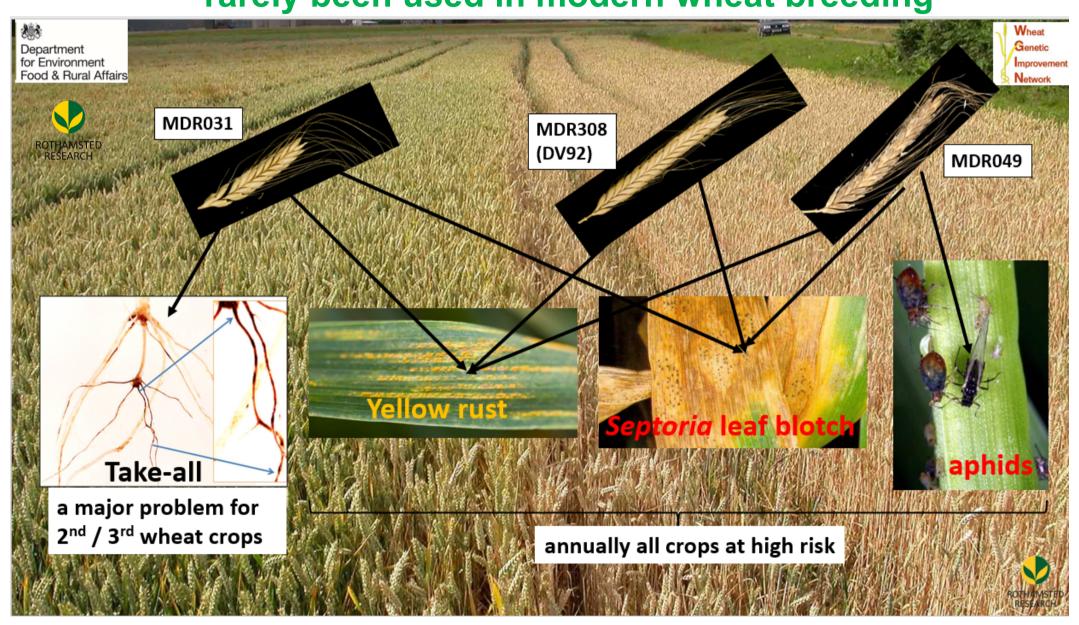
1st screened in lab tests
Best lines field trialled



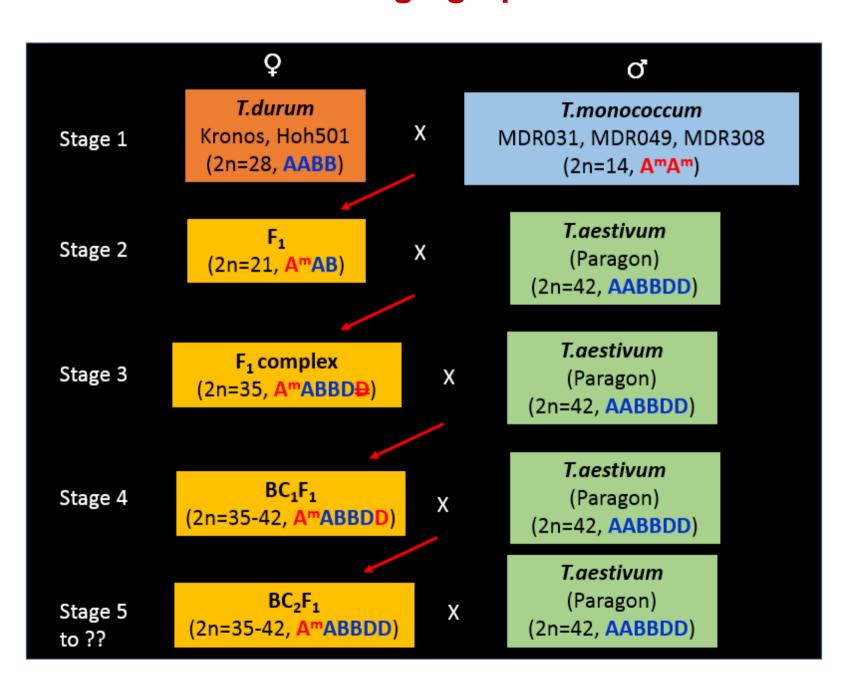
Watkins 374, 546, 624, 742

Yellow rust

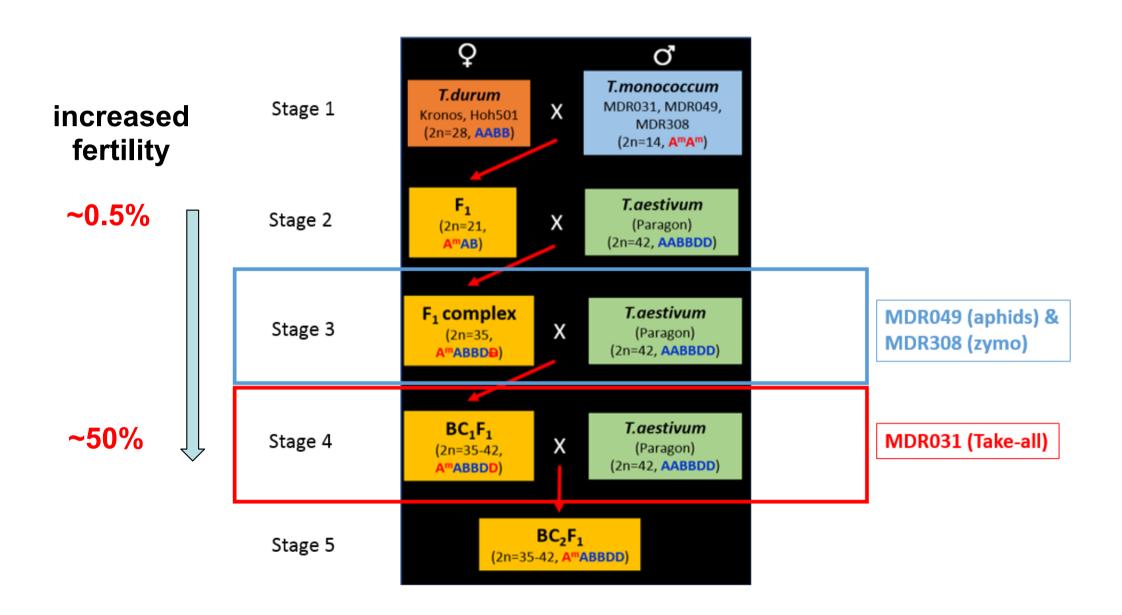
Field trials since 2007



Watkins 733, 786



Remained resistant throughout all the Yr race changes


Triticum monococcum (diploid, AA genome) a good source of resistance to various pathogens and pests rarely been used in modern wheat breeding

T. monococcum introgression : Using Tetraploid T. durum as a Bridging Species

T. monococcum introgressionprogress so far

T. monococcum introgression field trial 2020

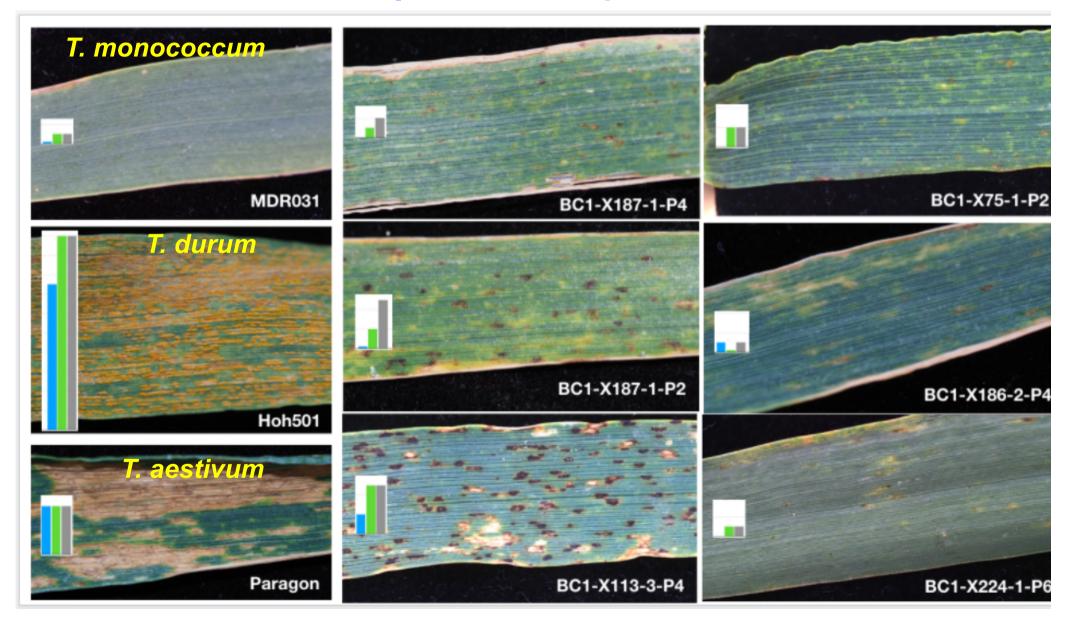
29th May - 1st June hand planted out 900 + seedlings from glasshouse

7th July 2020 - 40 days old

BC₁ (self) generation

Hand harvested mid – late Sept

20th August 2020 – 88 days old


20th June 2020 - 23 days old

T. monococcum introgression field trial 2020

509 *Tm* introgression plants 6 plants ≤ 10% Yr disease scored + ~350 control plants ~ 50 plants ≤ 25% Yr disease

The Networking objectives

Maintaining and enhancing the public – private network

9 activities

The Defra WGIN: Dissemination, Liaison and Communication

Annual "Stakeholders' Forum" (Nov) 70-100 attendees Focussed Workshop – 2009, 2013 'A x C mapping popn' 2010 – DArT marker analysis

Workshops with overseas partner organisations:

Seven funded by BBSRC (2018 – Kazakhstan, 2022? - Baltic)

Web Site (<u>www.WGIN.org.UK</u>), Electronic Newsletters

Scientific publications ~ 87 articles

Annual displays at 'Cereals'

E. mail: wgin.defra@bbsrc.ac.uk

Twitter Handle - @WheatGIN

Read more about WGIN4 go to the April 2019 Newsletter

Wheat Genetic Improvement Network (WGIN4) 2018-2023

Department for Environment Food & Rural Affairs

WP1 Management Meetings – The Network

Wheat
Genetic
Improvement
Network

Red text

- new to WGIN 4

WP1 Enhancing the Network and Communication of Results

- AHDB strategic and monitor farms
- Website
- Annual Stakeholders forum
- International collaborations

- Electronic Newsletter
- · Focussed UK/intl. workshops
- Public outreach
- Publications + data deposits

WP2 Tools and Resources

- Maintain and further develop, mapping popⁿ, Paragon lib, Watkins/Gediflux, T. monococcum collections
- · Observation plots on candidate cultivars
- Complete the A x C NIL TILING popⁿ / CSSL
- · Complete the T. monococcum introgression
- Sequence and assemble T. monococcum Chr 7A
- Trait related gene-specific marker development (KASP) from the PROMOTOME capture and WAK capture exps

WP3 Targeted Traits

Improving Crop Resilience (30%)

- · BYDV resistance, slug resistance
- · Take-all resistance and 3N re-rooting
- · Septoria and yellow rust resistance

Yield Stability / Sustainability (25%)

- · Spring drought tolerance
- Lodging resistance, stem anchorage

Enhanced Resource Use Efficiency (20%)

Nitrogen use efficiency (NUE)

Quality Resilience (25%)

- · Yield-to-grain protein, NUE
- Nutrient partitioning vis N-input and disease

Fine Phenotyping at Multiple Scales

WP4 Genetic and QTL Analyses

for each of the targeted traits (WP3)

Sub-Contractors - NGS Genome / Exome Analyses / Yellow Rust Races

[red text - new to WGIN4]

[black text - continuing from WGIN3]

Defra

www.WGIN.org.UK

Helen Riordan, Andy Cuthbertson, *Martin Cannell,

Giulia Cuccato and David Cooper (RAG)

WGIN3 / WGIN4

RRes - Kim Hammond-Kosack

Peter Shewry

Malcolm Hawkesford

Andrew Riche

Javier Palma-Guerrero

Gail Canning

Kostya Kanyuka

Lawrence Bramham

Michael Hammond-Kosack

JIC - Simon Griffiths

Clare Lister

GRU – WGIN seed stocks

Sub-contractors

Bristol Genomics – Jane Coghill's team

Arbor BioSciences, Michigan, USA

NIAB, Cambridge*

*new WGIN 4

The Management team

The Plant Breeders (9)

ADAS

AHDB

NIAB

Univ Bristol

Defra

Former RRes colleagues

Vanessa McMillan

Gia Aradottir

Affymetrix (35K wheat breeders array)

The farm / trials staff at all the sites used Numerous summer students

T. monococcum introgression field trial 2020

What traits were successfully scored?

Yellow Rust assessments on flag leaf and 2nd leaf

Septoria leaf blotch - none

Aphid infestations Focus R2#2-7 vs MDR049 – not possible, very low aphids

Ear morphology – photograph of 1st ear into anthesis for each plant

Ear glossy or non-glossy (waxy)

Awn absence / presence and length

Growth stages GS 22 to GS65 (Zadoks)

Flag leaf length*

Leaf senescence post anthesis *

* Jess Hammond (RRes apprentice)

Total number of flowering tillers / plant

- instead total number of harvested ears per plant

Plant heights* and peduncle lengths*

Grain harvest

Grain shape – photograph of grain recovered from each plant

Total grain number per plant

Black - originally planned Red - planned but not possible Blue - additional traits scored